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1. Instruction on running planner: 
Windows: 

g++ planner.cpp -o planner.exe 

To execute: 

planner.exe example.txt 

Linux:  

g++ planner.cpp -o planner.out 

To execute: 

planner.out example.txt 

’example.txt’ is the file containing the environment. 

2. Code Description and Planning Approach 
The first step is to compute all possible actions using the symbols in each environment. The planning 

algorithm then performs an A* search from the start state to the goal state by iterating through all 

actions that are valid. 

The heuristic_compute() function calculates the count of conditions in the goal state that are not yet 

satisfied in the current state. This approach is straightforward and provides an estimate of how close 

the state is to the goal. The edge costs between actions are set to 1. However, the heuristic is 

inadmissible and it often times is an overestimate since a since multiple conditions can be satisfied 

by a single action. 

3. Results 
The planner calculates the time taken to run each environment. The results of each environment are 

listed below. The time taken to run each environment is listed in the table below. 

a) Blocks Environment: 

Plan: 

MoveToTable(A,B) 



Move(C,Table,A) 

Move(B,Table,C) 

b) Blocks Triangle Environment 

Plan: 

MoveToTable(T0,B0) 

MoveToTable(T1,B3) 

MoveToTable(B0,B1) 

Move(B1,B4,B3) 

Move(B0,Table,B1) 

Move(T1,Table,B0) 

c) Fire Extinguisher Environment 

Plan: 

MoveToLoc(A,B) 

LandOnRob(B) 

MoveTogether(B,W) 

FillWater(Q) 

MoveTogether(W,F) 

TakeOffFromRob(F) 

PourOnce(F) 

LandOnRob(F) 

MoveTogether(F,W) 

Charge(Q) 

FillWater(Q) 

MoveTogether(W,F) 

TakeOffFromRob(F) 

PourTwice(F) 

LandOnRob(F) 

MoveTogether(F,W) 

FillWater(Q) 



MoveTogether(W,F) 

Charge(Q) 

TakeOffFromRob(F) 

PourThrice(F) 

d) Disk Environment 

Plan: 

MoveToShelf(DiskRed,DiskBlue) 

Move(DiskGreen,Shelf,DiskRed) 

Move(DiskBlue,Shelf,DiskGreen) 

 

Bonus Environment Description: 

In this extended environment, the goal is to rearrange colored disks (Red, Blue, Green, and Yellow) on a 

shelf, with the added complexity of a robotic arm that must first unclip the disks before they can be 

moved. This environment is designed to simulate a more complex planning scenario that involves 

additional steps and constraints. 

Key Features: 

1. Disks: There are four colored disks (Red, Blue, Green, Yellow) that start in a specific stacked 

arrangement. 

2. Shelf: The disks need to be rearranged onto this shelf according to the goal conditions. 

3. Robotic Arm: A crucial element that adds complexity. The arm must unclip a disk before it can be 

moved. Its availability is a factor in the planning process. 

4. Clipped/Unclipped State: Each disk begins in a clipped state. The robotic arm must unclip them, 

transitioning them to an unclipped state, making them eligible for movement. 

Initial Conditions: 

• The disks are stacked in a specific order, with some on the shelf and others on top of each other. 

• Each disk is initially clipped, preventing immediate movement. 

• The robotic arm is available for unclipping the disks. 

Goal Conditions: 

• A specified arrangement of the disks on the shelf, different from the initial setup. 

Actions: 

• Unclip: The robotic arm unclips a disk, allowing it to be moved. 

• MoveToShelf: Move an unclipped disk from its current position directly onto the shelf. 



• Move: Stack an unclipped disk on top of another disk. 

Challenge: 

The primary challenge in this environment is to strategically plan the sequence of actions, considering 

both the unclipping and moving of disks, to achieve the desired disk arrangement on the shelf. The 

planner must manage the constraints imposed by the clipping mechanism and the availability of the 

robotic arm, making the task more akin to real-world scenarios where multiple conditions must be met 

before an action is performed. 

 

Text File: 

Symbols: DiskRed, DiskBlue, DiskGreen, DiskYellow, Shelf, RobotArm, Clipped, Unclipped 

Initial conditions: On(DiskRed, DiskBlue), On(DiskBlue, Shelf), On(DiskGreen, Shelf), On(DiskYellow, 

DiskGreen), Disk(DiskRed), Disk(DiskBlue), Disk(DiskGreen), Disk(DiskYellow), Clear(DiskRed), 

Clear(DiskYellow), Clipped(DiskRed), Clipped(DiskBlue), Clipped(DiskGreen), Clipped(DiskYellow), 

RobotArmAvailable(RobotArm) 

Goal conditions: On(DiskBlue, DiskGreen), On(DiskGreen, DiskRed), On(DiskRed, Shelf), On(DiskYellow, 

Shelf) 

 

Actions: 

    Unclip(d) 

    Preconditions: Clipped(d), Disk(d), Clear(d), RobotArmAvailable(RobotArm) 

    Effects: Unclipped(d), !Clipped(d) 

 

    MoveToShelf(d,x) 

    Preconditions: On(d,x), Clear(d), Unclipped(d), Disk(d), Disk(x) 

    Effects: On(d,Shelf), Clear(x), !On(d,x) 

 

    Move(d,x,y) 

    Preconditions: On(d,x), Clear(d), Clear(y), Unclipped(d), Disk(d), Disk(y) 

    Effects: On(d,y), Clear(x), !On(d,x), !Clear(y) 

 

4) Performance: 



Environment Time(s) Plan 

Length 

Expansions Heuristic 

Blocks 0.01 3 5 Yes 

Blocks 0.02 3 7 No 

BlocksTriangle 0.356 6 103 Yes 

BlocksTriangle 1.155 6 205 No 

FireExtinguisher 0.663 21 482 Yes 

FireExtinguisher 0.909 21 482 No 

Disk 0.179 8 65 Yes 

Disk 1.094 8 281 No 

 

1. Completeness: The planner remains complete because it uses the A* search strategy without a 

depth limit. This means the planner will exhaustively search the entire space until it finds a 

solution or determines that no solution exists. 

2. Optimality: Although the planner uses the A* search algorithm, the optimality of the resulting 

plan is not guaranteed because the heuristic is inadmissible. An inadmissible heuristic 

overestimates the distance to the goal, which can cause the A* algorithm to miss shorter paths 

that it falsely deems less efficient. As a result, the planner may still find a solution, but there's no 

guarantee that it will be the best possible one. 

3. Domain Independence: The planner is domain-independent, as evidenced by its performance 

across various scenarios, from stacking blocks to complex tasks like fire extinguishing. This trait is 

highly beneficial, as it allows the planner to be applied to a wide range of problems without 

modification. The general search algorithm and the domain-independent heuristic—which is 

based on state-goal congruence—contribute to its flexibility and adaptability across different 

domains. 

4. Quality of the Plan: The quality of the plan, in terms of the number of steps, may not be the 

best due to the overestimation by the heuristic. If multiple goal conditions can be satisfied with a 

single action, the planner might choose a less efficient path because the heuristic suggests that 

it's closer to the goal than it actually is. 

5. Planning Speed: An inadmissible heuristic often speeds up the search by aggressively focusing 

on paths that appear to lead more directly to the goal, potentially at the expense of exploring 



other paths that might offer a more optimal solution. In the context of the provided planner, 

while the planning speed is high and all problems are solved in well under 60 seconds, this 

comes with the trade-off of potentially suboptimal plans. 

In summary, while the planner is complete and efficient in terms of speed, the use of an inadmissible 

heuristic means that it can no longer guarantee that the plans it generates are optimal. This trade-off 

between speed and plan quality is a common consideration in the design of planning algorithms, 

particularly in complex domains where the computational cost of finding the optimal solution may be 

prohibitively high. 

The results show a comparison between runs of a planner using a heuristic ("Yes" in the Heuristic 

column) and runs of the same planner without a heuristic ("No" in the Heuristic column). Here's an 

analysis of the improvements gained from using a heuristic in the search: 

Planning Speed: 

The use of a heuristic has significantly reduced the planning time across all scenarios: 

• For simple block stacking problems ("Blocks"), the time is cut in half from 0.02s to 0.01s. 

• In more complex scenarios involving both blocks and triangles ("BlocksTriangle"), the heuristic 

reduces planning time from 1.155s to 0.356s. 

• In the "FireExtinguisher" scenario, which likely has a much larger search space, the time 

reduction is less pronounced but still notable (from 0.909s to 0.663s). 

• The "Disk" scenario shows a substantial time reduction when using a heuristic (from 1.094s to 

0.179s). 

Plan Length: 

The plan length remains constant regardless of whether a heuristic is used. This suggests that the 

heuristic does not affect the outcome in terms of the actions required to achieve the goal but does 

improve the time taken to find the same solution. 

Expansions: 

The number of expansions—a measure of how many nodes are processed in the search—shows a clear 

advantage when using a heuristic: 

• In the "Blocks" scenario, using a heuristic reduces the expansions from 7 to 5. 

• In the "BlocksTriangle" scenario, expansions are nearly halved (from 205 to 103) when a heuristic 

is applied. 

• The "FireExtinguisher" scenario shows no change in expansions, which is interesting. This might 

indicate that the heuristic is guiding the search efficiently but the complexity of the scenario 

prevents a reduction in the number of expansions needed. 

• The "Disk" scenario also demonstrates a substantial reduction in expansions (from 281 to 65) 

when using a heuristic. 



Discussion: 

The data indicates that using a heuristic in the search yields a significant improvement in planning speed. 

This is expected because heuristics guide the search towards the goal more directly, reducing the 

number of nodes that need to be explored. However, the heuristic does not always reduce the number 

of expansions, as seen in the "FireExtinguisher" scenario, suggesting that the heuristic's effectiveness 

may be context-dependent. 

In this specific case, the heuristic appears to be particularly effective in scenarios with smaller state 

spaces ("Blocks" and "Disk"). In larger or more complex state spaces ("BlocksTriangle" and 

"FireExtinguisher"), while the heuristic still improves the time, the benefit to the number of expansions 

varies. 

The constant plan length across runs with and without a heuristic indicates that the heuristic is not 

affecting the quality of the plan, which remains optimal as guaranteed by the A* algorithm. However, the 

optimality of the heuristic-based plan is contingent upon the admissibility of the heuristic, which has 

been noted to overestimate in this planner's case. 

Overall, the heuristic improves search efficiency in terms of time, which is a valuable asset in real-world 

applications where time is a critical factor. The improvement in expansions suggests that the heuristic is 

generally effective, although its performance may not be uniform across different problem domains. It's 

also important to note that even though the heuristic can overestimate and therefore is inadmissible, it 

can still be useful for finding solutions more quickly, even if the guarantee of optimality is lost. 

Note: 

I tried to implement part(b) the empty delete heuristic but I could not figure out how to increment the 

heuristic values based on the delete conditions. The code of the heuristic can be found in my planner file 

on line 982 in planner.cpp 

 

 


