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1) Running Instructions: 
To compile on Linux (Mac or Windows may require a substitute for g++, e.g. clang): 

>> g++ planner.cpp -o planner.out (optional but may be necessary: -std=c++11) 

To enable debugging, add a -g tag: 

>> g++ planner.cpp -o planner.out -g 

This creates an executable, namely planner.out, which we can then call with different inputs: 

>> ./planner.out [mapFile] [numofDOFs] [startAnglesCommaSeparated] 

[goalAnglesCommaSeparated] [whichPlanner] [outputFile] 

Example: 

>> ./planner.out map1.txt 5 1.57,0.78,1.57,0.78,1.57 0.392,2.35,3.14,2.82,4.71 

2 myOutput.txt 

This will call the planner and create a new file called myOutput.txt which contains the resultant path 

as well as the map it was run on. 

2)Helper Functions: 
2.1. Checking validity of arm configuration 

In my approach, I utilized the provided function IsValidArmConfiguration to ensure the arm 

configuration's validity at every step. This was employed consistently to verify both the start and goal 

configurations. 

2.2. Checking validity of transition between configurations 

I established a procedure to validate the transition between configurations by subdividing the interval 

between two nodes into a predefined number of steps. I crafted a function that meticulously checks the 

validity of each configuration within this interval, ensuring a smooth and valid transition. 

 

2.3. Procuring random node 

To generate a random node, I implemented a while loop, generating random angles until a valid arm 

configuration was achieved. For PRM, the start and goal node was inserted into the initial graph. 



 

2.4. Finding closest node 

I adopted a method to find the closest node by calculating the root mean square (rms) error between 

the joint angles of the current node and each node already present in the graph or tree. The node with 

the smallest rms error was then chosen as the nearest neighbor. 

 

2.5. State of nodes 

In my strategy, the state of nodes was represented through a structured format, including attributes such 

as angles, previous node, cost, and node number. This structured representation provided a consistent 

and efficient means of storing and accessing node information across different algorithms. 

3)Summary of Approach 
3.1. RRT 

I employed the RRT algorithm with a loop that continues until the goal is reached. Random nodes are 

generated and the closest node on the existing tree is determined. If the distance to the nearest node 

exceeds a threshold (epsilon), a new node is added in the direction of the random node at a distance 

epsilon. This ensures a consistent growth of the tree towards unexplored areas. Validity checks for 

configurations and transitions are performed at each iteration, ensuring the integrity of the path. My 

chosen parameters were epsilon = numDOF/3 and step_size of 0.1 for transition validity checks. 

3.2. RRTConnect 

My implementation of the RRTConnect algorithm involved two trees and utilized the extend function 

similar to the RRT algorithm. After each extension, the trees are swapped and an attempt is made to 

connect the most recently added node to its nearest neighbor in the other tree. This process continues 

until a valid connection is established, with regular checks for configuration and transition validity. 

Parameters were set to epsilon = numDOF/3, step_size of 0.1. 

3.3. RRTStar 

In RRTStar, my approach involved extending the tree similar to the RRT algorithm, but with additional 

steps for rewiring to optimize the path. The goal is not a terminating condition; instead, the algorithm 

continues to search and rewire to improve the path even after the goal is reached. The number of 

rewiring attempts post-goal is determined by a predefined number of samples. The radius for neighbor 

selection decreases as the number of nodes increases, with parameters set to epsilon = numDOF/3 and a 

constant of 0.5 for radius computation. 

 

3.4. PRM 

My PRM approach constructs a graph with 5000 random nodes, including the start and goal states. 

Nodes are connected if they fall within a specified radius (5 nodes in this case), and are not already 

connected. The neighbors for each node are selected based on their distances, with a priority queue 



managing the neighbor selection process. The queue is limited to three contents, ensuring efficient 

neighbor selection. Once the graph is constructed, A* algorithm is employed to find the optimal path. 

4) Experimental Results 

Problem Statement: 
This report provides a comparison of four different planning algorithms applied to a robotic arm motion 

planning problem. The environment is described in map2.txt, and 20 random start and goal 

configurations for the 3 DOF arm configuration are generated and fixed for all planners. The planners in 

consideration are RRT, RRT Connect, and RRT*. The metrics for comparison are: 

 

1. Average planning times 

2. Success rates for generating solutions in under 5 seconds 

3. Average number of vertices generated (in a constructed graph/tree) 

4. Average path qualities 

 

Figure 1: RRT 



 

Figure 2: RRT Connect 

 

Figure 3: RRT* 



 

Figure 4: PRM 

 

The results are summarized in the table below: 

 

1. Average Planning Time 

RRT: The Rapidly-Exploring Random Trees algorithm took an average of 0.0094 seconds for planning, 

making it relatively efficient. 

 

RRT Connect: This approach was even faster with an average planning time of 0.0034 seconds, marking it 

as the most time-efficient method among the ones listed. 

 

RRT*: The optimized version of RRT, RRT*, took a little longer at 0.0054 seconds. While it's slower than 

RRT Connect, it's still faster than the basic RRT. 

 

Avg. Planning Time(s) Sub 5s Success Rate Avg num vertices Avg. Path Quality

RRT 0.0094 95% 182 7.19

RRT Connect 0.0034 100% 152 8.34

RRT* 0.0054 90% 180 6.12

PRM 1.4 100% 650 7.2



PRM: The Probabilistic RoadMap method was considerably slower in planning with a time of 1.4 

seconds, making it the slowest among the four. 

 

2. Sub 5s Success Rate 

RRT and RRT*: Both of these methods have a high success rate, with RRT at 95% and RRT* at 90%. This 

suggests that while they are efficient in terms of time, they might not always find the best path in every 

scenario. 

 

RRT Connect and PRM: Both these algorithms achieved a perfect 100% success rate within the 5-second 

benchmark, indicating their robustness in varied scenarios. 

 

3. Average Number of Vertices 

RRT: Utilized an average of 182 vertices. 

 

RRT Connect: Used slightly fewer vertices than RRT, averaging at 152 vertices, which could be a factor 

contributing to its faster planning time. 

 

RRT*: Was close to RRT with 180 vertices, suggesting a similar approach in terms of exploration. 

 

PRM: Had the highest average number of vertices at 650, which is expected given its method of 

constructing a dense graph before searching for the path. 

 

4. Average Path Quality 

RRT: Achieved a path quality of 7.19, which is decent but not the best among the algorithms. 

 

RRT Connect: Scored an impressive 8.34, making it the algorithm with the best path quality in this 

dataset. 

 

RRT*: The path quality was the lowest at 6.12, suggesting that while it is optimized for speed and 

efficiency, it might not always yield the most optimal paths. 

 



PRM: Achieved a good path quality score of 7.2, close to RRT's score but achieved with a significantly 

longer planning time. This is mostly because of the initial node map generation. 

 

In conclusion, while RRT Connect shines in terms of speed and path quality, PRM offers robustness with 

its perfect success rate but at the cost of longer planning times. RRT and RRT* offer a balance between 

planning time and path quality, with RRT* leaning more towards efficiency over path optimality. 

Depending on the specific requirements of the application, one might prioritize speed (RRT Connect), 

robustness (PRM), or a balance (RRT, RRT*). 


