16-782: Planning and Decision-making in
Robotics
Homework 1: Robot Chasing Target

The provided code implements a path planning algorithm for a robot in a grid-based environment. It
uses a combination of heuristics and A* search to find an optimal path from the current robot
position to a target position while avoiding obstacles. The algorithm is divided into several key
components:

1. Heuristic Calculation:

e The code calculates heuristics for each cell in the grid using a variant of the A*
algorithm, referred to as the HeurCalculator. This heuristic estimates the cost from
each cell to the goal cell, considering obstacles and time constraints.

2. A* Search:

e The Astar function implements the A* search algorithm to find the optimal path
from the current robot position to the target position. It uses the calculated
heuristics to guide the search.

e The code maintains priority queues for open and closed states, and it explores
neighboring cells while considering the cost of reaching them.

3. Search Strategy:

e The code employs a goal-directed search strategy. It uses backward heuristics to
evaluate possible goals and selects the one with the lowest estimated cost.

4. Memory Management:

e The code dynamically allocates memory for a 2D array named steps to keep track of
the time steps at which each cell is visited. The memory is correctly deallocated
using delete[] at the end of the planner function to prevent memory leaks.

5. Data Structures:

e The code uses priority queues to manage states in the A* search. Custom
comparators (heur_minimum, f_minimum, max_g, and best_goal_heuristic) are
defined to prioritize states based on heuristics and cost.

6. Input and Output:

e The planner function takes various parameters such as the map, collision threshold,
grid size, robot's current position, target trajectory, and current time.

e It computes backward heuristics, selects a goal, runs A* search, and returns the next
action for the robot as action_ptr.

Efficiency and Quality:



The code uses heuristics to guide the search, which can significantly improve efficiency by
focusing on the most promising paths.

It correctly handles obstacles and time constraints when evaluating cell validity.

The goal-directed search strategy helps reduce the search space by considering likely goal
locations.

Memory management is appropriately handled to prevent memory leaks.

Let's dive deeper into the heuristic calculation, A* search, and the search strategy that evaluates
possible goals in the provided code:

Heuristic Calculation (HeurCalculator):

The heuristic calculation is a critical component of the path planning algorithm as it guides the
search by providing an estimate of the cost from each cell to the goal cell. Here are the key details of
the heuristic calculation:

Input Parameters: The HeurCalculator function takes several input parameters, including the
current goal coordinates, current time, target steps, grid size, collision threshold, and the
map of the environment.

Data Structures: It uses priority queues (Open_list) to manage states (cells) to explore. It
also maintains vectors (Heuristic and Explored) to store the calculated heuristic values and
track explored cells.

A* Variant: The heuristic calculation employs a variant of the A* algorithm. It explores
neighboring cells while considering the cost of reaching them. It uses priority queues to
prioritize cells with lower heuristic values, which leads to a goal-directed search.

Cell Validity: Before evaluating a cell, it checks whether the cell is within the grid boundaries,
whether the current time is within the target time steps, and whether the cell is not
occupied by an obstacle. This ensures that only valid cells are considered.

Heuristic Updates: The code updates the heuristic value for each cell if a shorter path to that
cell is found during the search. This is based on the cost of the path so far and the cost of
reaching the neighboring cell.

A* Search (Astar Function):

The A* search is responsible for finding the optimal path from the robot's current position to the
target position. Here are the key details of the A* search:

Input Parameters: The Astar function takes various input parameters, including the current
robot position, target coordinates, current time, target steps, grid size, collision threshold,
and the map of the environment.

Data Structures: It uses priority queues (Open_list and Closed_list) to manage states (cells)
during the search. The Open_list prioritizes cells based on the estimated total cost,
considering both the cost to reach the cell (g) and the heuristic estimate (f).



Exploration: The code explores neighboring cells by considering potential moves in nine
directions (dX and dY). It calculates the cost to reach each neighboring cell, taking into
account the current time and obstacle presence.

Goal Reached: If the goal is reached, it backtracks from the goal state to find the optimal
path by following the states with the lowest g values in the Closed_list.

Efficiency: A* search is guided by the heuristic values, which provide a good estimate of the
remaining cost to reach the goal. This helps the algorithm prioritize cells that are likely to
lead to an optimal path, making the search more efficient.

Search Strategy Evaluating Possible Goals:

The search strategy that evaluates possible goals is an essential part of the algorithm. It helps
identify promising goal positions for the robot. Here's how this strategy works:

Initialization: When the current time is O (curr_time == 0), the algorithm calculates
backward heuristics for potential goal positions based on the robot's current position and
the target trajectory.

Goal Evaluation: For each potential goal, the algorithm calculates a cost estimate that
combines the backward heuristic, the time difference between the current time and the last
visit to that cell, and the map cost. It then pushes these potential goals into a priority queue
(least_cost_heur), prioritizing the ones with the lowest cost estimate.

Goal Selection: The algorithm selects the goal with the lowest cost estimate from the
least_cost_heur queue as the current goal for the robot to reach.

Heuristic Update: After selecting the goal, the algorithm updates the heuristic values based
on this goal to guide the subsequent A* search.

Efficiency: This strategy efficiently evaluates potential goals based on the available
information, allowing the algorithm to make informed decisions about where the robot
should move next.

In summary, the heuristic calculation provides estimates of cell costs, the A* search finds an optimal
path, and the search strategy evaluates and selects promising goals for the robot to reach. These
components work together to efficiently guide the robot through the grid-based environment while
considering obstacles and time constraints.

Results:



0
-8 robot
-8 target
500 A g ' pou ’ e § A
:.
=
1000 A
1500 1 ]
L1
2 e °
m s ]
2000 -
0 250 500 750 1000 1250 1500 1750
Map 1:
RESULT

target caught =1
time taken (s) = 2640
moves made = 2639

path cost = 2640



500 A

1000 A

1500 4

2000 A

0 250 500 750 1000 1250 1500 1750

Map2:

RESULT

target caught =1
time taken (s) = 4672
moves made = 1235

path cost = 4454325



50

100

150

200

250

300

350

400

Map3:

RESULT

target caught =1
time taken (s) = 243
moves made = 242

path cost = 243

100

200

300

400



50

100

150

200

300

350

400

Map4:

RESULT

target caught =1
time taken (s) =325
moves made = 253

path cost = 18332

100

200

300

400



25

50

75

100

125

150

175

0 25 50 75 100

Map5:

RESULT

target caught =1
time taken (s) =175
moves made = 175

path cost = 2576

125

150

175



0 25 50 75 100

Map6:

RESULT

target caught =1
time taken (s) = 126
moves made = 14

path cost = 2520

125

150

175



50 1

100

150 -

200

250 A

300 A

350 A

0 50 100 150 200
Map7:
RESULT
target caught =1
time taken (s) = 251
moves made = 251

path cost = 251

250

300

350



50

100

200

300

350

0 50 100 150 200

Map8:

RESULT

target caught =1
time taken (s) =431
moves made =430

path cost =431

250

300

350



50

100

200

250

300

350

0 50 100 150 200

Map9:

target caught =1
time taken (s) = 368
moves made = 367

path cost = 368

Execution:

To compile the cpp code:

>> g++ runtest.cpp planner.cpp
To run the planner:

>> . /a.out map3.txt;

To visualize the robot and target’s trajectory:

250

300

350



>> python visualizer.py map3.txt;



