
16-782: Planning and Decision-making in
Robotics

Homework 1: Robot Chasing Target

The provided code implements a path planning algorithm for a robot in a grid-based environment. It

uses a combination of heuristics and A* search to find an optimal path from the current robot

position to a target position while avoiding obstacles. The algorithm is divided into several key

components:

1. Heuristic Calculation:

• The code calculates heuristics for each cell in the grid using a variant of the A*

algorithm, referred to as the HeurCalculator. This heuristic estimates the cost from

each cell to the goal cell, considering obstacles and time constraints.

2. A* Search:

• The Astar function implements the A* search algorithm to find the optimal path

from the current robot position to the target position. It uses the calculated

heuristics to guide the search.

• The code maintains priority queues for open and closed states, and it explores

neighboring cells while considering the cost of reaching them.

3. Search Strategy:

• The code employs a goal-directed search strategy. It uses backward heuristics to

evaluate possible goals and selects the one with the lowest estimated cost.

4. Memory Management:

• The code dynamically allocates memory for a 2D array named steps to keep track of

the time steps at which each cell is visited. The memory is correctly deallocated

using delete[] at the end of the planner function to prevent memory leaks.

5. Data Structures:

• The code uses priority queues to manage states in the A* search. Custom

comparators (heur_minimum, f_minimum, max_g, and best_goal_heuristic) are

defined to prioritize states based on heuristics and cost.

6. Input and Output:

• The planner function takes various parameters such as the map, collision threshold,

grid size, robot's current position, target trajectory, and current time.

• It computes backward heuristics, selects a goal, runs A* search, and returns the next

action for the robot as action_ptr.

Efficiency and Quality:

• The code uses heuristics to guide the search, which can significantly improve efficiency by

focusing on the most promising paths.

• It correctly handles obstacles and time constraints when evaluating cell validity.

• The goal-directed search strategy helps reduce the search space by considering likely goal

locations.

• Memory management is appropriately handled to prevent memory leaks.

Let's dive deeper into the heuristic calculation, A* search, and the search strategy that evaluates

possible goals in the provided code:

Heuristic Calculation (HeurCalculator):

The heuristic calculation is a critical component of the path planning algorithm as it guides the

search by providing an estimate of the cost from each cell to the goal cell. Here are the key details of

the heuristic calculation:

• Input Parameters: The HeurCalculator function takes several input parameters, including the

current goal coordinates, current time, target steps, grid size, collision threshold, and the

map of the environment.

• Data Structures: It uses priority queues (Open_list) to manage states (cells) to explore. It

also maintains vectors (Heuristic and Explored) to store the calculated heuristic values and

track explored cells.

• A* Variant: The heuristic calculation employs a variant of the A* algorithm. It explores

neighboring cells while considering the cost of reaching them. It uses priority queues to

prioritize cells with lower heuristic values, which leads to a goal-directed search.

• Cell Validity: Before evaluating a cell, it checks whether the cell is within the grid boundaries,

whether the current time is within the target time steps, and whether the cell is not

occupied by an obstacle. This ensures that only valid cells are considered.

• Heuristic Updates: The code updates the heuristic value for each cell if a shorter path to that

cell is found during the search. This is based on the cost of the path so far and the cost of

reaching the neighboring cell.

A* Search (Astar Function):

The A* search is responsible for finding the optimal path from the robot's current position to the

target position. Here are the key details of the A* search:

• Input Parameters: The Astar function takes various input parameters, including the current

robot position, target coordinates, current time, target steps, grid size, collision threshold,

and the map of the environment.

• Data Structures: It uses priority queues (Open_list and Closed_list) to manage states (cells)

during the search. The Open_list prioritizes cells based on the estimated total cost,

considering both the cost to reach the cell (g) and the heuristic estimate (f).

• Exploration: The code explores neighboring cells by considering potential moves in nine

directions (dX and dY). It calculates the cost to reach each neighboring cell, taking into

account the current time and obstacle presence.

• Goal Reached: If the goal is reached, it backtracks from the goal state to find the optimal

path by following the states with the lowest g values in the Closed_list.

• Efficiency: A* search is guided by the heuristic values, which provide a good estimate of the

remaining cost to reach the goal. This helps the algorithm prioritize cells that are likely to

lead to an optimal path, making the search more efficient.

Search Strategy Evaluating Possible Goals:

The search strategy that evaluates possible goals is an essential part of the algorithm. It helps

identify promising goal positions for the robot. Here's how this strategy works:

• Initialization: When the current time is 0 (curr_time == 0), the algorithm calculates

backward heuristics for potential goal positions based on the robot's current position and

the target trajectory.

• Goal Evaluation: For each potential goal, the algorithm calculates a cost estimate that

combines the backward heuristic, the time difference between the current time and the last

visit to that cell, and the map cost. It then pushes these potential goals into a priority queue

(least_cost_heur), prioritizing the ones with the lowest cost estimate.

• Goal Selection: The algorithm selects the goal with the lowest cost estimate from the

least_cost_heur queue as the current goal for the robot to reach.

• Heuristic Update: After selecting the goal, the algorithm updates the heuristic values based

on this goal to guide the subsequent A* search.

• Efficiency: This strategy efficiently evaluates potential goals based on the available

information, allowing the algorithm to make informed decisions about where the robot

should move next.

In summary, the heuristic calculation provides estimates of cell costs, the A* search finds an optimal

path, and the search strategy evaluates and selects promising goals for the robot to reach. These

components work together to efficiently guide the robot through the grid-based environment while

considering obstacles and time constraints.

Results:

Map 1:

RESULT

target caught = 1

time taken (s) = 2640

moves made = 2639

path cost = 2640

Map2:

RESULT

target caught = 1

time taken (s) = 4672

moves made = 1235

path cost = 4454325

Map3:

RESULT

target caught = 1

time taken (s) = 243

moves made = 242

path cost = 243

Map4:

RESULT

target caught = 1

time taken (s) = 325

moves made = 253

path cost = 18332

Map5:

RESULT

target caught = 1

time taken (s) = 175

moves made = 175

path cost = 2576

Map6:

RESULT

target caught = 1

time taken (s) = 126

moves made = 14

path cost = 2520

Map7:

RESULT

target caught = 1

time taken (s) = 251

moves made = 251

path cost = 251

Map8:

RESULT

target caught = 1

time taken (s) = 431

moves made = 430

path cost = 431

Map9:

target caught = 1

time taken (s) = 368

moves made = 367

path cost = 368

Execution:

To compile the cpp code:

>> g++ runtest.cpp planner.cpp

To run the planner:

>> ./a.out map3.txt;

To visualize the robot and target’s trajectory:

>> python visualizer.py map3.txt;

